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ABSTRACT

A new névigation filtering technique has been formulated using
as state variables the initial or epoch position and velocity of the
spacecraft. The estimate of this initial. state is then improved
by filtering new measurements. The current state may be obtained
by a conic extrapolation of the epoch state. Results of a digital
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lation of the navigational problem results in less computer run
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The errors produced by this technique have been demonstrated to be
comparable to those obtained by conventional maximum- likelihood

filtering.
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LIST OF SYMBOLS

General Notation

Symbol

An underlined symbol indicates a vector.

A prime to the upper right of a symbol indicates the
quantity is that extrapolated from the previous
measurement time,

A caret over a symbol indicates that the quantity is an
estimate.

A bar over a symbol or group of symbols indicates the

expected value of what is beneath,
A "o" subscript on a symbol denotes an epoch quantity.

A "k" subscript on a symbol denotes that quantity at the
time of the kth measurement,

Definition

parameter of the weighting vector
parameter of the epoch weighting vector
disturbing acceleration

reciprocal of the semimajor axis

apriori variance of measurement error
geometry vector
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R
variable defined in t0 equation
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CHAPTER I

INTRODUCTION

One of the processes of coasting flight navigation involves
improving the estimate of the spacecraft's position and velocity
vectors. In the Apollo navigation system this is accomplished
with a recursive formulation of the maximum—.likelihood eé-
timator in which state or process noise is neglected. Measurement
data, regarded as scalar information, is incorporated as it is
obtained to update the estimate of the state. This data handling
technique is termed recursive processing as opposed to batch

processing wherein measurement data is incorporated all at once.

The process of determining the estimate of the state vector
as stored in the on-board digital computer involves integrating
the equations of motion which govern the spacecraft. During
both coasting flight and under the influence of a vector disturbing

acceleration, a,, these equations are:

drt)  pr)

+ = a  (r(t))
dt2 r3(t) —d =
dr(t)
v(t) = =
- dt

where _r_-(t) and v(t) are the current position and velocity vectors

of the vehicle with respect to the primary body and y is the

1



gravitational constant of the p.rimary body. Integration of these
equations involves selecting an appropriate set of state variables.
For Apollo, current position and velocity are used to define the
state. Intuitively, this is a proper choice of state variables since
current position and velocity are ultimately the quantities which
are estimated by the navigation filter. Another related set of
variational parameters is the spacecraft's position and velocity

at some initial time or epoch.

The formulation of the space navigation‘problem'using the
epoch state as state variables requires a variation of parameters
solution which is discussed in this thesis. It is shown that this
latter formulation has certain computational advantages over
the conventional one, namely, less computer run time and computer
storage space. The disadvantage, a slight decrease in accuracy, is
introduced because of a simplifyiné assumption used to integrate
the time derivatives of the epoch state error covariance matrix.
However, in many cases this error is small so that the epoch
formulation of the navigational problem may replace a formulation
such as the one used in Apollo. Various examples are given as
cases where the implementation error is negligible. Also,
statistical equations were developed to predict the filtering

approximations of the epoch state filter.

In Chapter II the conventional formulation of the naviga-
tional problem is discussed in detail. Its design philosophy is
explained as well as how error is propogated and measurement

date is recursively incorporated to improve the estimate of the



state vector. Also discussed in this chapter is the design philo-
sophy and choice of state variables for the epoch formulation

of the navigational problem. The equations for the epoch filter
used to estimate the state vector are derived in Chapter III.
Explanation is given for the assumption made to simplify this
formulation. A comparison between the basic equations of the
conventional and epoch filter formulations is also given. Finally,
statistical equations for the error incurred using the epoch
rather than the conventional state filter are derived. Computer
simulation results of the epoch formulation of the navigational
problem are presented and discussed in Chapter IV. Conclusions
regarding the epoch state filter, its advantages and areas of

application are explained in Chapter V.



CHAPTER II

NAVIGATION FILTER FORMULATIONS

2.1 Design Philosophy for the Apollo Navigation Filter

Position and velocity as maintained in the Apollo Guidance
Computer (AGC) are estimates of the true state of the spacecraft.
These estimates aré propagated from measurement to measurement
by integrating the equations of motion of the vehicle with respect to
time. Integration of the spacecraft's motion involves the selection
of an appropriate set of state variables. Cufrént position and velocity
of the spacecraft are used in the Apollo navigation system. Intuitively,
this is a proper choice of state variables since these are the quantities

to be estimated.

The vector equations governing the motion of the spacecraft

during coasting flight are:

dzr(t) i
_ + r{t) = a,(r@)) (2.1.1)
dt2 r3t) —d =
dr(t)
— = v (t) (2.1.2)
dt -

where r(t) and v (t) are the vector position and velocity of the vehicle
in non-rotating rectangular coordinates with respect to the primary

body and p is the gravitational parameter of this body. The



quantity 2y is the vector disturbing acceleration which prevents

the motion of the spacecraft from being precisely a conic orbit. The
disturbing acceleration is a function solely of the position vector. |
For earth orbit, only gravitational perturbations due to the non-
spherical gravity field of the earth need be considered ina,. The

equation for the disturbing acceleration used in this study is given by:

I 2
.4 35 (TE ] | |
24775 372 (8) [ -5cosp)i, +2cosp ] (2.1.3)

r

where g is the angle between -i-r the unit vector in the r direction, and
—iz’ the unit vector in the direction of the spin axis; Ip is the equatorial
radius of the earth and J2 is the coefficient of the second harmonic of

the earth's potential function.

When 2, is small compared with the central field of the primary
body, direct integration of Eqs. 2.1.1 and 2.1, 2 in rectangular coordi-
nates is inefficient. An alternate procedure suggested by Enckel, is
used to perform this integration. For the Encke method of integration,
the actual position and velocity of the spacecraft, defined by the current

values of r(t) and v(t), are viewed as deviations from a conic or oscu-

lating orbit

r(t) = r . ) +8() (2.1.4)

v (t)

Voo )+ uit) (2.1.5)

In practice, the osculating orbit and the deviations from this orbit
onboard a spacecraft are only estimates of their true values and are

represented with a superscript "'*". Hence, the current position and



velocity estimates are given by

1}
e

T (t) (t) + § (2.1.6)

—08scC

v = (t) + () (2.1.7)

XOSC

The osculating orbit at any particular time is determined from
ideal two-body motion by solving Kepler's equation for 6. This is

accomplished by using the following equations for two-body motion:

Eosc=F£o+GX0 (2.1.8)
-X-OSC = FtEO + Gt—‘lo . (2.1. 9
where
F=1-2X@-coso) (2.1.10)
|y
r, :
G = r—w=sin9 (2.1.11)
h
Ju %o B
F, = ¥ 9 (1-cos8) -~ sine (2.1.12)
t r P r h
o) o
o
Gt = 1-—(1-cosg) (2.1.13)
P
and
r = P . (2.1.14)
1+ & - 1)cose - "9 sing
Lo Vi To

The parameters in 2. 1. 14 are determined according to the

following equations:



r Vv :
g = 2 —O0 (2.1.15)

© Vi
2 Vo
w =2 __0© (2.1.16)
T, u
p = 2r, - !xr'oz - 0(2) (2.1.17)

The deviation vector §(t) and y(t) are obtained by integrating the

following differential equations:

dé(t)
— =y (1) (2.1.18)
dt —
dy(t) " ,
=__3..__._[ £(@) r(t) + 8(t)) + gd(g(t)) (2.1.19)
dt rosc(t)

subject to initial conditions _5_(t0) = _g(to,) = 0  where

g -4 &-20 (2. 1. 20
3
r
and
2
flq) - 3B F3q+a7) (2.1.21)
1+(1+q)3/2

A recommended numerical integration technique, Nystrom's

Method, exploits the fact that a4 is a function only of r, the vector to

be integrated,

For Encke's Method to be efficient, the first term on the right
hand side of Eq., 2.1.19 must remain small, i.e., of the same order or

less as the disturbing acceleration. To insure the efficiency, a new



osculating orbit is periodically defined from Which_é_ and py are cal-
culated. When this rectification is done, the new osculating orbit

is defined by the current values of r (t) and v (t) and the initial condi-
tions for Equations 2.1.18 and 2.1. 19 are again set equal to zero at

the current time.

2.2. Error Covariance Matrix

The position and velocity vectors which are stored in the Apollo
Guidance Computer (AGC) are estimates of their true values. Since
these estimates will be in error, it is necessary as part of the
maximum-likelihood filtering technique to maintain the statistics

associated with these errors.

If ¢ (t) is the three dimensional error in the position estimate
and 1 (t) is the three dimensional error in the velocity vector, then
the error in the estimate of the state vector is given by

€ (t)
e(t) = - (2.2.1)

- ()

When unbiased measurement data is processed to determine
the maximum - likelihood estimate, the error in the estimate has a
zero mean, i.e. :e = 0 so that the 6 x 6 covariance matrix of estima-

tion errors is defined by

[
1m
T
1=

E = ee = . (2.2.2)

=
X0
|=
1=



and is also stored in the AGC.

A useful measure of the error in the position estimate is given
by the rms position error. This error is determined by the square
root of the trace of the upper left hand 3 x 3 partition of the covariance
matrix and is given by

S 1/2
rms position error = Ltr (—ek'e—k ):] (2.2, 3)

Similarly, the rms velocity error, a good measure of the error in the
velocity estimate, is determined from the lower right hand corner
of the covariance matrix according to

T 1/2
rms velocity error = [tr (_lel]k ) :i (2.2.4)

With the recursive formulation of the Kalman estimator, mea-
surement date is processed as it is obtained. The covariance matrix
is maintained in the AGC in the intervals between which measurements
are taken and is updated as is the current estimate of the state vector

when the measurement data is incorporated by this linear estimator,
The Kalman filter operates as follows. First, the old estimate

is extrapolated to the current time, yielding the best estimate prior

to the incorporation of measurement data. For coasting flight

E(t, _ 1) is extrapolated to the current time, b by

1 oo T



The prime ' to the upper righ.t of E(tk) indicates the covariance matrix
of estimation errors at tk is that based on previous k-1 measurements
and ® (’ck , tk _ 1) is the 6 x 6 state transition matrix by which the

state and certain statistical quantities are extrapolated in time from
tk—l to tk . The transition matrix satisfies the first order matrix

differential equation
subject to the initial condition
d (tO’ ’CO) = I

where I is the 6 x 6 identity matrix,

r—- ° —
0 I
F(t) = (2.2.7)
G(t) 0
where
og
cit)y = ||—= ||
°r

The 3x 3 matrix G(t) is the gradient of the gravitational field g with
respect to the components of the position vector r. For orbital

navigation about a primary body, G(t) is given by

10



G(t) = —F£ [3r(t)r(t)T-r2(t)I] | (2.2.8)
rd(t) T 7

An alternate method of extrapolating the covariance matrix
rather than by first determining @(tk, b 1) and then substituting
this matrix into Equation 2.2.5 is to integrate the first order differen-

tial equation for E'(tK)
‘i - y) y/ T
E(tk) = F(tk)E(tk)+ E(tk)F(tk) (2.2.9)

This is obtained by differentiating Equation 2. 2.5 with respect to time
and substituting Equation 2. 2.6 in the resulting equation, the deriva-

tion of which is given in Appendix A.

Once the extrapolated covariance matrix is obtained, the
measurement data is incorpbrated according to optimal estimation
theory. As a result of the measurement incorporation, the statistics
of the error covariance matrix are changed. A weighting vector w
is determined which minimizes the mean squared error in the esti-
mate. According to maximum-likelihood theory, the weighting

vector is given by

1

w=LED (2.2.10)
w=—ED

where b is a 6 dimensional geometry vector associated with the

measurement and

a = b Eb+a (2.2.11)



where ozz is apriori variance of the measurement error. In terms
of E'(tk) as well as Equations 2.2.10 and 2.2, 11, the new value for
the covariance matrix of estimation errors is determined according

to

T

E(t,) = E'(t) - wb E(t) (2.2.12)

or

E(t,) = (I-wb) E'(t,) (2.2, 13)

2.3 Measurement Incorporation

For flight paths which are close to a nominal one, §x may
be expressed as a linearized deviation about the nominal state and

is denoted by

§x = ' (2.3.1)

The estimate of the state vector is obtained by the operation
of the optimum linear estimator on the state deviation vector. First,
the previoué state deviation estimate is extrapolated to the current
time yielding its best value prior to the incorporation of new infor-

mation. This is expressed by the following relationship

6X' (ty) = Blty, ty ;) 8X (ty ) (2.3.2)

12



where & (tk, tk— 1) is the state transition matrix. The best estimate

of the measured quantity 6§§’, is computed according to

8a’(t) = bT 8%’ (1) (2.3.3)

The difference between the actual measurement data 65 and
the filter's prediction of what this value should be §§’ is weighed

statistically against 6_3_(’. This is accomplished through the use

of a statistical weighting vector ¢y defined by

: (2.3.4)
a

where

a = bTE/b+ao” (2. 3. 5)
Making use of Equations 2. 3. 2 through 2. 3.5, the updated state
estimate at measurement time tk is obtained from
X (t) = 6%/(t)+ w(sq (t)- 84’ (t)) | (2.3.6)

13



Equation 2. 3. 6 is simplified by adding the estimate of the state

deviation from the nominal path to the current state;

—}fnom(tk) =§(tk) * Gi((tk) (2.3.7)
so that a new nominal path is defined at every measurement time tk'
By adding 62{ to the current estimate of the state, the spacecraft
is assumed to be on the nominal trajectory which is redefined at
each measurement time. The extrapolated deviation of the vehicle

from the nominal path at time t, is then zero since the spacecraft

k

was on the nominal trajectory at time tk 'This is illustrated in

-1
Figure 2.1,

The equation for determining the state deviation estimate

at tk then reduces to

5% (t,) = w69 () (2.3.8)

This is seen by substituting 8§'(tk) = 0 inEquation 2. 3. 2 and noting

that §q' which is a function of §x' (tk) is also zero.

2.4 Design Philosophy of the Epoch State Filter

Current position and velocity of the spacecraft are the typical
vector quantities which are estimated by a spacecraft computer doing
recursive processing such as the AGC. These quantities vary con-
tinuously along the path. An estimate of the current state is obtained

by integrating the equations governing the motion of the vehicle. In

14



Nominal Path Defined at tg_y

N1
X (ty)

Nominal Path Defined at ty
62 (tK)lxk ;
A

\
(tk ) |

Xnom

Figure 2.1 Effect of adding the expected deviation of the
state tho the expected state X af time t
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the Apollo formulation of the navigational problem, current position
and velocity along the path of the spacecraft are the quantities

used in the integration of these equations. This is a convenient

and intuitively correct choice of state variables since current position
and velocity are the quantities to be estimated. Estimation of

the state vector is then made by incorporating measurement data
using Kalman gains in the space navigation filter. This current
measurement information is used to update the current estimate

of the position and velocity vectors.

The formulation of the navigational problem developed in
this paper employs a related set of state variables, namely, the
position and velocity of the spacecraft at some initial or epoch
time which are adjusted in a manner such that a simple conic
irajectory connects tﬁis point with the current position. This
adjustment is made so that the extrapolated velocity also matches
the current velocity at the current time. A scalar variational
paramet'er is also used along with the above two vector quantities,
aé a means of extrapolating quantities from the epoch to the current
state. This is the true anomoly difference, 6, the central angle
between the current and the epoch position vectors and is considered

the independent variable.

Because the epoch state is not accurately known initially,
measurement data is incprporated using a Kalman filter to estimate
these initial conditions. This is analogous to what is done in Apollo
however, for that formulation of the navigation problem, measurement

data is used to improve the current estimate of the state. When

16



sufficient new information is incorporated, the epoch state vector

is brought up to the current time by solving Kepler's equation.

The main difference between the conventional and epoch
formulation of the navigational problem is illustrated in Figure 2. 2.
In the conventional state filter, current position and velocity are
used as state variables whereas for the epoch state filter, epoch
position and velocity are used as state variables. These epoch
quantities are integrated between measurements and then updated

at the current time using current measurement data.

The epoch formulation of the navigation problem developed
in this thesis makes use of the variable epoch form of the variationa12
equations. This means that the epoch time, to’ is forced to vary
in the intervals between measurements. The variable epoch form
of these equations was used because of their relative simplicity
when compared with the fixed epoch form, however, the navigational
problem could just as well have been formulated using the fixed epoch-
form of the variational equations for which 1:0 = 0. This feature is

explained in Chapter III.

Rather than using the true anomaly difference @ as the indepen-
dent variable, the generalized anomaly, x, may be treated as the
scalar variational parameter. Solving a differential equation for x
eliminates the necessity of solving Kepler's equation for this same
variable in the same fashion as integrating the differential equation
for 8 eliminates obtaining Kepler's solution. Still another differential

equation in terms of the epoch time, to’ can be integrated instead

17



Path of spacecraft

Y
[l : ‘v‘—\l\l
X (ty)
Measurement
Interval
)_<0(t0), Eo(to)
xo(tK), Eo(tK)
)_(O ('(N), EO (tN)
Epoch formulation of the Navigational Problem
Path of spacecraft . t'.f . i
toMK) N,
X (t ) E(tg) X (ty)
0 E(ty)
Eo(ty) N

Figure 2.2 Conventional Formulation of the navigational problem.
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of the two equations indicated above. However, solving this

equation for t0 necessitates solving Kepler's equation for x,

Position and velocity were chosen as state variables for both
the Apollo and the epoch formulations of the navigation problem for
convenience, because this state is the quantity that is estimated by
the filter. However, other variational parameters may be used
to formulate estimates of the current state véctor, such as the
orbital elements. Equations for this formulation are developed

in Reference 2.

19



CHAPTER III

THE EPOCH STATE FILTER

3.1 Derivation of the Epoch State Filter

Current position and velocity are the state variables used in
the Apollo navigation filter and in the integration of the equations
of motion of the spacecraft. The current state is estimated by
measurement data which is incorporated to update the current state

estimate directly.

For the Epoch State Filter (ESF), po'sition and velocity of the
vehicle at the epoch time are the state variables which are used
in the integration of the equations of motion. This filter estimates
the current state indirectly by first estimating the epoch state.
Current measurement data is processed to update the epoch state
estimate. The improved current state estimate is then obtained

from thé epoch state estimate by conic extrapolation.

The state equations of motion used for the ESF formulation
are derived as variations of the epoch state, r, and v _. An
additional differential equation in terms of the independent scalar
variable @ is also integrated. Theta, the true anomaly difference,
is the angle between the epoch and current position vector as

illustrated in Figure 3. 1.

20



Figure 3.1

The True Anomaly Difference
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These differential equations for __r.‘o’ {’o’ and é(derived in
Section 3. 3) are integrated to propagate the estimate of the epoch
state before the new information is introduced. Measurement
data is then incorporat'ed to estimate the epoch state deviation,

6 i(o(t), from its nominal value at the current time. This is related

to the estimate of the current state deviation § X (t) by
1 42
b x (3.1.1)

in terms of the state transition matrix & (t, to). The current state

estimate, 6_3_(, determined by Equation 2. 3. 6 is rewritten here as
~ Al ~ T A
5_>_(= 6 x +_@(6q—l_o 6x) (3.1.2)

replacing § &' by its equivalent _bT 6%' where

]
w = Eb (3.1.3)
- a

lo*

. . . . 1
The current covariance matrix of estimation errors, E, before
the measurement is incorporated is related to the epoch covariance

matrix by

(3.1.4)

Substituting Equations 3. 1. 2 through 3. 1. 4 into Equation 3. 1.1

and bracketing significant terms yields

22



6x = [ 'ex'1+ e lor ' (oTkl/a) (63-bT 6% (3.1.5)

The product & 1 ® is the identity matrix so that the first term in

brackets is just 62{0, i. e,

and bo is related to b according to

N
by = @b

so the second term in brackets is _t_JO.

(3.1.6)

(3.1.7)

When Equations 3. 1.6 and

3.1.7 are substituted into Equation 3. 1.5 the resulting equation is

6%, = 6x,' + [E, b,/a] (6g-b" 8% (3.1.8)

The term in brackets can be defined as the epoch filter gain Wy

where

(3.1.9)

Substituting Equation 3, 1.9 into 3. 1. 8, post multiplying ET in

Fquation 3. 1.8 by the identity matrix ¢ 1, and bracketing significant

terms yields
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But

ET & = b | (3.1.11)

and
(3.1. 12)

When Equations 3.1, 11 and 3. 1. 12 are substituted into Equation 3.1, 10

the resulting equation for the ESF is

6%, = 6% + w (83-b T 63" (3.1.13)
As is done in the Apollo navigation system, 5%0' is added to the
estimate of the total state vector so that the nominal path is redefined
by the kth measurement. Therefore, for the nominal path defined

by the (k- 1)th measurement, the extrapolated estimate of the

deviation from the nominal trajectory is zero, i.e. 6_35(; (t) = 0

as illustrated by Figure 3.2. Substituting 6%0' = 0 into Equation

3.1.13 yields
5% = w. 69 (3.1. 14)

which is the ESF equation for incorporating scalar measurement

data to update the estimate of the epoch state.
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NOMINAL PATH DEFINED BY (k-1)TH MEASUREMENT

Figure 3.2 Redefinition of the Nominal Path
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3.2 Derivation of the Error Covariance Matrix Used in the ESF

The equation for the epoch error covariance matrix Eo
associated with the state deviation 630 is obtained from the covariance

matrix equation developed in Section 2, 2

E. = E_-wb E ‘ (3.2.1)

where the subscrfpt k indicates the quantity at time tk' Noting the
relations between the epoch’and current parameters
L ‘ 1 T
Ek <I=k,0 E0 q:k’o (3.2.2)
E_ = &, E & T (3.2. 2)
k k’0 "o Tk, 0 T
and substituting these into Equation 3. 2.1 yields
T T 1 =T b bT T :
$E & = ¢E'® -OE & " _QE_ & (3.2, 4)
o o o a o
where w in Equation 3. 2.1 has been replaced by
E b »
w = K= : (3.2.5)
-~ a.

and the subscripts on ® have been dropped for simplicity.

Premultiplying Equation 3.2.4 by &~ 1, postmultiplying by

@T— 1 and grouping significant terms produces the following equation
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1 Eo [‘I’TL)] T '
E = E -—=—— _[b &]E (3.2.86)
(o] (o] a — (o)
but
_ LT
b, = &b (3.2.7)
so that
b7 = bl (3. 2. 8)

The first term in brackets is then _lgo and the second is _lgoT.

Rewriting Equation 3. 2. 6 making these substitutions yields

o = B - ——— b ' E (3.2.9)

w, = —— (3.2.10)

o o - Wb, E, (3.2.11)

Equation 3.2, 11 is of the same form as Equation 3. 2. 1 but the "k"

subscripts of the latter equation have been replaced by "0" subscripts

in the epoch form.
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The'd'in Equation 3. 2. 10 is equivalent to the epoch quantity ag

as demonstrated by the derivation. Rewriting the equation for a
b+ o (3.2.12)

and substituting for _bT and b in terms of their epoch quantities,

and bracketing significant terms yields

b+ o (3.2.13)

1
The term in brackets is Eo so that Equation 3. 2. 13 reduces to

- Tt
a = b~ E b +a | (3.2. 14)

which is the expression for a,s hence

a = a (3.2, 15)

3.3 Explanation of Assumptions Made to Integrate the ESF Equations

The position and velocity, r(t) and v (t) respectively, in the
Apollo navigation filter are updated in real time and change continu-
ously along the path. For the epoch state version of the navigation
filter the initial position and velocity, rS and v, are updated at
measurement times; however, between measurements these
vectors remain constant. Similarly, the initial error vector,

e

€5 is constant between measurements. Thus between measurements:

28



e, = constant (3.3.1)
so the time derivative of the error vector is zero, i, e.
= 0 (3. 3. 2)

also, since

E = e e | | (3.3.3)

E = e e + (3.3.4)
0 —0 =0 ~o0-=0
Therefore, between measurements
E =0 (3.3.5)

Unlike the current error covariance matrix, E(t), which
changes continuously along the path, the epoch covariance maitrix,
Eo’ re‘mains constant between measurements so that it does not
have to be propagated. In the interval between the (k- 1)th measure-
ment and the kth measurement, Eo remains constant or EO‘ (tk) = Eo(tk— 1)

as illustrated graphically in Figure 3. 3.

For ideal two body motion the above results may be applied
exactly. Also, &, the transition matrix, may be calculated

analytically for a conic path.

29



' l Eo ()= Eg [tk
% - EQ (tg.1)

Eolt) | Eoltka) ’Ec’ (t)

B VN

Figure 3.3 Graphical Ilustration of the Components of E.
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With a disturbing acceleration, ay

derived above still hold, i.e. the epoch state and epoch covariance

present, the concepts

matrix may remain constant within measurement intervals. But
motion under the influence of a disturbing acceleration is not two
body motion. The equation governing the motion of the spacecraft

is then

¥+t r=a (r (3. 3. 6)
—_ I'3 — — —
In order to use the two-body formulation of the navigational problem,
the disturbing acceleration is considered to perturb r, and A from
their nominal two body values. Similarly, €5 and thus EO are
perturbed from their ideal two body values. However, because these
change only slowly for non-ideal two body motion, the perturbations
are ignored and Eo is not propagated between measurements. Proof
that E for the actual path is close to Eo for the conic path and

varies only slowly is given here, thus validifying the approximation
that Eo = O‘for the actual path. Remember that E.JO = 0 for the

conic path is exact,

Let the '""c¢" subscript on the state transition matrix @ and the
* guperscript on the covariance matrix E denote the values of these
quantities for the conic path. See Figure 3.4 for an illustration

of the conic and actual path and their related quantities.

The differential equation for ¢ as given in Section 2.2 is

9® . re (3.3.7)

dt
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E*(t)
E* (1) = E (1)

'CONIC PATH {947 0)— - ACTUAL PATH (2g#0)

Figure 3.4 1Illustration of Actual Path to Which the Conic Path
of the Spacecraft is Matched
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where

0 :
F = (3.3.8) .
G

For the conic path, the differential equation is

d@c
—_— = F_ & (3.3.9)
dt

The current covariance matrix E(t) in terms of the epoch covariance

matrix for the actual path is given by

E(t) = 0E &' (3.3.10)
but

E'(t) = E®) (3.3.11)
SO

¢ . E"0 T = o6 o7 (3.3.12)

Solving for EO;‘ in Equation 3.3.12 and grouping significant terms

yields
telm (6T e T (3.3.13)

Define the new variable cI)T as
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so that Equation 3. 3. 13 expressed in terms of <I>T is

® expressed in terms of <I>T is

E sk

(o)

_ T
- éTEoé

Taking the time derivative of 3.3. 16 yields

Substituting Equation 3. 3.9 for &_and 3.3.7 and 3.3 16 for 3,

& G+t @ &g = &

Equation 3. 3. 17 becomes

Collecting like terms Equa'tion 3.3.18 reduces to

Fo e

¢T+¢c

¢c¢T =

Solving for &)T yields

But

er=Fo o

c T

(F - Fc) ®. <I>T
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and simplifying replacing (G - GC) by Gad’ F - Fc is given by

O O
F-F =
c
Grad O
DefiningF—Fc as Fad
F.= & 1% &
T c ad ¢

Equation 3. 3. 20 is then written as

-
&p = &, T F 4% ®p

@)

G

-

-

so that Equation 3. 3.22 becomes

(3.3.22)

(3.3.23)

(3.3.24)

(3.3.25)

(3. 3.26)

By observing the components of Equation 3, 3. 26 it is seen that <I>T

is small;also since initially <I>T (to, to)

and from Equation 3. 3. 16 it is seen that

]
IR
(o
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Also, since

© T
Eo = ‘I’T E ‘I’T
and <I>T is close to I
Eog Eo (3.3.28)
The assumption that E0 = O between rﬁeasurements for

non ideal two-body motion greatly simplifies calculations. The
epoch state covariance matrix does not have to be propagated
within measurement intervals. Also, becau'se & is close to cbc,
the transition matrix may be calculated agebraically, as in the
case for ideal two-body motion, as opposed to _integrating a differ-

ential equation for &.

Analytical calculation of the state transition matrix, &, is

explained here. Consider the state vector x wheré

r
x = (3.3.29)
v ,

r and v are functions of initial position and velocity

r = r (50, Voo t) (3. 3.30)
v = v (30,_370, t) (3.3.31)
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and t is the independent variable upon which I Yo and thus r and v

are dependent. Taking partial derivatives of r and v at time tk yields

dr ar
6r, = — 6r +  —
-k -0

ago azo
‘ v
6Vk )Y 6r +
- dr -0 dv

~0 —0

§v

-0

Expressing Equations 3. 3. 32 and 3. 3. 33 in matrix form

— - T ar ar
or — -
~k

°r, Vo

AV v

Sv —_ -
- _k_J afo B_YO
- .

B 7

6r

-Q

(3.3.32)

(3. 3.33)

results in

(3.3.34)

Defining the 6 x 6 matrix of partial derivatives with respect

tor_ and Y, as ?I>(tk, to) Equation 3. 3. 34 becomes

o]

6x, = @, t))ox,

(3. 3.35)

The partial derivatives of the state transition matrix as given

in Reference 2 are written here

or

~ sk T
= = V)

or
~0

37

(3. 3. 36)



aV >::‘ -
= s cwve)T-re T

a—-o
or sk
°= - rw = -RF )T
dv o
—0
AV
— = V(i)
AV
—0

where

The R and V matrices are given by

RO =L (U o) exly, T U o) r G

” 2
V(t)=—l(U rrT—crvT)-*--r—o(V-V)(V-V)T'*'GI
1[‘3 —-0 ——0 u — -0 - -0 t

where

Jpe = 3U5—xU4fU2~/ﬁ(t-to)

' . . * *
and x is obtained by solving Kepler's equation. The R and V
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matrices obtained from Equations 3. 3.41 and 3. 3. 42 by interchanging

x and t by -x and -t as well as interchanging r, v and r,, v, are

R (t) —:L ([Uy (¢ -2V -cv ]v - Uy (v - rT}- GI (3. 3. 44)
V() = r—1§ (Uyr rT +er vH+Zw - -nT+FL (3.3.45)
(o]

Because of the assumptions allowing for the analytical
calculation of &, computer run time and computer storage space
are conserved. This approximation is not without some loss of
accuracy, however. The variation of parameters equations for
r, and Y derived in section 3. 4 are exact but the way they are used
introduces some error in ¢. That is, the position and velocity of
the spacecraft are matched with the position and velocity of a
conic path yielding a conic epoch position and velocity that differ

from the actual -I:o and Xo'

3.4 Derivation of the Variational Equations

The variational parameters for the epoch state filter are the
epoch state variables IS and Yo and the true anomoly difference 8.
Derivation of the variational equations in terms of these parameters

is presented here.

Current position and velocity vectors r and v can be expressed

in terms of their values ro and AN at some epoch time to as follows
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T T
x FoG o
= (3.4.1)
T T
Y F, Gy ~o0
L - L - e -
or
— - - .
T r T
L Zo
= - Y (3.4.2)
T T
Y ~o
L J - =

defining the matrix of scalar quantities F, G, Ft’ Gt as ¥ where

, U 1.
F=1-—-= - (on-cUl) (3. 4. 3)
r r
o o
JTuG=rU1-oU2 (3.4.4)
Ft S/ U1 (3.4.5)
rr
o
Gt= 1 - =2 (3-4:.6)
r
and
o1
o=—— r- v (3.4.7)
Ju
The U functions used in this derivation are given in terms of 6 as
ory
U = 1- ° (1- cos ) (3.4.8)
p
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with

and

Equation 3. 4.1 may be solved for I, and Yo by premultiplying both

%o

It

reo

sides of the equation by ¥~ 1

—

T
z

i<

41

thus obtaining

L sineg- ° (1 - cos 6)
Jp p
I’l"o
—— (1 - cos 8)
p
rr
Ji (t-t)- sin 8
JP
p
h o
1+ (2 - 1)cos8-—2L5sind
r, i,
2
21‘0—(.1/1"0 - 0,
2 ¥
oo
1
—/--—.—'EO.-‘—,O
S

I~

I <

(3.4.9)

(3.4.10)
(3.4.11)
(3.4.12)
(3.4.13)
(3.4.14)
(3.4.15)
(3.4, 186)



where the determinant of the matrix ¥ is unity. The perturbation
derivatives of r, and v, may now be calculated from Equation

3.4.16 applying the formal rules for variation of the orbital elements.
Briefly this means Equation 3. 4. 16 is to be differentiated according
to the usual rules of differentiation but r is treated as a constant

and the orbital elements as variables. The term dv/dt is replaced

by a . and dx/dt by d¢/dt where £ represents the chahge in x arising

d
solely from changes in the orbital elements due to a

Formal differentiation of Equation 3. 4. 16 yields

_ - - - - -
dr T rT 0
—0 —_
dt , N | _
= 4¥ + oyl (3.4.17)
dt
deT vT a
— - =d
L dt . L - L J
where
dy !
is defined in terms of its components as
dt -
| B dG,  dG
-1 dt dt
dy = | (3.4.18)
dt
dFt dF
B dt dt N
dG

The upper left- hand element of 3. 4. 18, is obtained by

dt
formally differentiating Equation 3. 4.6. Thus,

th

dt

. dU2 (x; o)

(3.4.19)

1
r dt
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dU, (x; o)
is derived in Reference 2 using the formal rules

dt

for variation of the orbit elements and is written here as

where

dU
_2 . __‘i+(1/2)U -(1/2)u, 2 do (3. 4. 20)
dt dt dt

The perturbation derivative for « , the reciprocal of the semimajor
axis, is given by

"_Z'_Y'Ed (3. 4.21)
"

In order to express Equation 3. 4. 20 in terms of Gt and Ft’ the

first term on the right-hand side is multiplied and divided by

,/p /rO and—l- U2 v oay is added to and subtracted from the second
1)

term so that

(3. 4.22)

The term in brackets is F and the third and fourth term simplify to

--—Uva

a4 G so Equation 3. 4.22 becomes
wo2-
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dG r
—-—-t-=_1—U2v°ath+—~i(—d—§+1/2U3—g—a’)Ft (3.4.23)
dt u -7 JE o dt dt
Ly v-a (3. 4.23)
u 27 --d . T

Similarly, differentiating the expressions for G, Ft and F the following

Equations are obtained

U r : _
S4G. 2 via6- 2L rapuder (3.4.24)
dt [T JE - dt dt
1
+-—r-a,U
w — -—d 2
dF
St B dEy Ly deyg oS ivaF,  (3.4.25)
dt ro dt 2 dt p o T~
dF . A (s 20,926+ v - v)ayF (3. 4. 26)
dt r 2 dt dt p " — -

r
_—J (XO-X)‘E'dF

Details in the derivation of Equations 3. 4. 24 to 3. 4. 26 are given

in Appendix C.
Equations 3. 4. 23 to 3. 4. 26 can be expressed in matrix form

as a matrix multiplied by ' 1 plus another matrix, that is
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- r |
-}—Uszad -_° §_§_+(1/2)U3§_@
) g - JE | dt dt
dy - -1
= Y
dt -
B 14E 113y, _9‘:!] IwTovha
r dt dt ! [T -7
o » _I
B =
1 T 1 T
-—Uyv ay = Ugr 2y
2 I
+ (3. 4. 29)
@) - Ly T. VT) a
p o - —d
The variational equation for the epoch time, t , may be
calculated from Kepler's equation
- = = - +
JB (t ty) =, U+ o, Uy + Ug r, U - o0, + Uy (3. 4, 28)
by formal differentiation, treating t as a constant and using the
variational equations for the time derivatives of the U functions
given in Reference 2. This equation is
dt, fd £ do 1 do do
Jﬁ——==—ro—~+(1/2)U3—' - == + Uy — (3. 4.29)
dt dt dt 2 dt dt
where ¢ has been defined by
e = 3Ug-xT, - Uyulh (t-t) (3. 4.30)
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do

If to varies so that-d—g- +( 1/2)U3 = 0, Equation 3. 4.29 reduces to

dt dt

dt U
_° = (1/9c 82+ 2 do (3.4.31)
dt dt /g dt
When—gg is replaced by Equation 3. 4., 21 and_iig_ by the following
dt dt
variational equation
do = L. (3.4.32)
dt JE T T
the variational equation for the epoch time becomes
dto 1
—_— = __(cv+U2r)' ay (3. 4.33)
dt 2 - - -
. dy ! d q '
Getting back to , when 28 + (1/2)U3 =% = 0 is substituted
: dt dt dt
into Equation 3. 4. 27, this matrix simplifies to
1 T 1 T ]
— U2 oAy @] Gt -G
-1 K
dvy -
dt o T TovTya -F F
—0 - t
B K 4 L -
1 T 1 T ]
" Ug v ay mn Upr 3y
+ .
o I TovTya) (3.4.34)
U —0 - '2d
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Taking components of Equation 3. 4, 17, the perturbation

derivatives of ro and v, are expressed as

T
dr dG
=0 = 1T 4G T_ga (3. 4. 35)
dt dt — dt — -
T
dv dF 2
-0 _ _ t . T, dF vT+Fad (3. 4. 36)
dt dt — dt — -
Multiplying out the matrices of Equation 3. 4. 34 produces
1 T 1 T
7 U2Y 24 Gy "pU2Y 234G
dy! -
dt
_r T_ T r,. T _T
2% yagFy - T -v)ayF
L .
B N
1 T 1 T
g U2 ¥Y 3y 7 U2l 3y
+ (3.4.37)
) -z (v T. XT)_a_t
7
L -1 -
When the related components of dy from Equation 3. 4. 37
dt
are substituted into Equation 3. 4. 35, the result is
T
dro” _ Uy o T T T T T T
=2 [v a,Gr -v a,Gv -v agr
dt [T - - - - T T
T T '
trioagv |- Gay (3. 4. 38)
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Collecting like terms and making the substitution _r_‘oT = Gt ET - GVT

produces the following equation

dfo U2

= (VTa r -via,r +r  a VT)~Ga (3.4.39)
q - =d = =d
t K

Finally, taking the transpose or Equation 3. 4. 39 and collecting

like terms results in the variational equation for r

ay- Gay (3. 4. 40)

dy
dt
Equation 3. 4. 37 are substituted into Equation 3. 4. 36 the result is

Similarly, when the related components of from

dVT

20 T

I
dt i

T T T T T
[- v, -y agFer  + v - v ) ag Fy

- (_\_fOT - XT)_zg _YT] + F ay (3. 4.41)

Making the substitution _YOT = Ft rT + F XT in Equation 3. 4. 41

yields

dvT

=2 —r-[(VT-VT)a v - (VT-VT)a VT]+Fa (3. 4. 42)
dt L —0 — "=d-=o —0 — =d-= ~d

Transposing Equation 3. 4. 42 results in the following variational

equation for Vo
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V)" ay ay (3.4.43)

Using the following relation derived in Reference 2

NE T U
L raypu de =20 A0 WH (G hyrs 2y s, (3.4.40)
dt dt h dt r w2~ "~ - -

where G obtained form Equations 3.4.4, 3.4.9, and 3.4.10 is
given by |

rr.
G = sin @ (3. 4. 45)
h

and _0_1_{5_

is determined according to
dt

= (3.4.46)
dt dt r2

6 being the variation in the true anomoly difference 6.

Equation
3.4.47 is obtained When—c—i—g + (1/2)U3$Y_ is set equal to zero and
dt dt
substitutions 3. 4. 45 and 3. 4. 46 are made in Equation 3. 4.44. Thus,
WATES rr U

-1 08 b ) AB(_Osingnxrt-2r) a, (3.4.47)

h dt r r h - oow -~

Solving for d8 in the above equation results in
dt
h3
U

_d_.9.=l‘§_+_1_[sinehxr+ 2 1] ay (3. 4. 48)
dt r h2 -7 prr_ -
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Recalling Equation 3. 4. 10 for U2 where
2
p = A (3. 4. 49)
K

The second term in the brackets is

3
hU,

rr
H (o}

r=h(l-cos@)r (3.4.50)

Therefore, the variational equation for the independent variable
6 is

E.+_1_[sinehxr+h(1—cose)r]'
dt r2 n2 - B

ay (3.4.51)

Equations 3. 4. 33, 3. 4. 40, 3 4,43, and 3. 4. 51 are the variable

epoch form of the variational equations. This form of the variational

equations was used in this thesis for simplicity, since the term
i'?- + L U3 do was eliminated by forcing the epoch time, t _,
t%tvaryzaccorc?i;g to: t'0 = —;11— (cv+ U, r)-  ay. The variational
equations ..for the fixed epoch case are obtained by setting t.o = 0 in

Equation 3 4.29.

3.5 Effect of a Measurement on the True Anomoly Difference 6

When a measurement is taken, current time is essentially
stopped and the epoch time, to, remains fixed, Holding the epoch

time constant during a measurement incorporation in the variable
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epoch case does not introduce inconsistencies from the time-of-flight
standpoint, since the state transition matrix relates variations

in the state at the given "to” to state variations at the current

time "t'". However, since @ is the angle between the epoch and
current position vectors and because measurement incorporation
changes the estimate of these vectors by 6%, and 6_f;‘ respectively,

the true anomoly difference may change by an amount A 6. This

is illustrated in Figure 3. 5. The epoch variation in the true anomoly

difference is given by

5 = —2 (3.5.1)

Wher'e_i_6 is the unit vector in the direction of the epoch change in @
o :

and is normal to ro - Similarly, the current variation in the true

anomoly difference is given by

=28 "= (3.5.2)

The total change in @ is the difference between the current and the

epoch deviations, that is,
A0 = 66—590 (3.5, 3)

Substituting Equations 3. 5.1 and-3. 5.2 into 3. 5. 3 produces
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Figure 3.5 Geometric Ilustration of the Total Change in the

True Anomoly Difference
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Ap==8 - _ _© (3. 5. 4)

Expressing Equation 3. 5.4 in terms of the current and epoch state

deviation vectors yields

ag = |1 6% - L °) 6%, (3.5.5)
r 0 - r 0 -

The estimate of the current state deviation vector 6‘;( is determined

from measurement data by

o
Iy
1]
i
I
o
No ),

(3.5.6)

Extrapolation of the epoch state deviation vector to the current time

is accomplished by use of the state transition matrix according to

8% = &(t, t) 6x, (3.5.7)
where 55{0 is determined from measurement data by
6x, = w, 6q (3.5.8)
Making these substitutions in Equation 3. 5.5 and factoring out

%o 65 results in the following Equation for the total change in the

true anomoly difference:
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3.6 Comparison of the Conventional and Epoch Formulations of the Navigational Problem

CONVENTIONAL FORMULATION

EPOCH FORMULATION

STATE VARIABLES AND VARIATIONAL

r(t), v(t)

8= v
v = A @+ 8]+ 2y
0OScC
where
6-(6-2r)
q = 5

£(q) = q(3 + 3q + qz)

1+(1+q)3/2

EQUATIONS OF MOTION

r ), v (t)

6 = __132_ +i[sinehxr+_§(1—cose)£]'

a
r h2 - —d

for which the epoch time, to, is forced to vary
according to

(cv+Uyr) - ay

rr,
U2 = (1 - cos 8)
P




9¢

CONVENTIONAL FORMULATION

EPOCH FORMULATION

OPTIMUM LINEAR ESTIMATION EQUATIONS

65 = 6%’ + w(6a-b 6%")
E = (1- @b )E
where
E’b
w =
a
T 2

A

6xo

i

]

1]

A, ~ T A ’
6x,* w, (Gquo 0%, )

T

(I—gop—o )Eo
E ‘b

o —o

a

o

T 4
bo” Bo Bpt o
T ., 2
BT R b+,
a

&l b

!



3.7 Statistical Equations for Error Using the Epoch Formulation

of the Navigational Problem

When the epoch formulation is used rather than the conventional
formulation of the navigational problem, error is introduced because
of the assumption that allows for the analytical calculation of the
state transition matrix as opposed to integrating a differential equation.
The statistical equations for this error are developed here. Let <I>C
denote the conic state transition matrix calculated for the epoch
state filter. The current estimate of the state deviation vector for

this filter is given by

6% = w69 (3.17.1)
where
E’b
w = — (3.7.2)
- a
and the estimate of the epoch state deviation vector is given by
6% = w, 67 (3.7.3)
where
E ‘b
w. = o —o
=0 a (3.7.4)

The estimate of the current state deviation vector for the epoch state

filter given in terms of epoch quantities is
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6x = @_.6x = @&_w_ 67 (3.7.5)
Let the error vector, eq incurred using the epoch formulation be the

difference betwéen the current state deviation vector of the conventional

filter and that of the epoch state filter. This error is given by
ey = wb6y-dw 679 (3.17.6)

Factoring out §¢ and substituting equations 3.7.2 and 3. 7.4 for

w and w, respectively yields

Sq T ‘;‘[E"B"I’EO'EOH'@ (3.7.7)
Substituting for -t?o in terms of b Where
b, * LR | o (é. 7. 8)
aﬁd factoring out b results in
eq © %[E'-q’Eo"PT]BGa’ (3.17.9)

The error covariance matrix, E,, introduced by using the epoch as

d’
opposed to the conventional formulation of the navigational problem is

_ T
d = &4%4 (3.7.10)
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T] (3.7.11)

The total error vector, e the epoch solution of the navigational
problem is the error inherent in the exact solution of the navigational
problem, en plus the error incurred using the epoch formulation,

ey That is,

e, = e_ *+ e (3.7.12)
-n

Solving for the total error covariance noting that e, and e , are

uncorrelated yields

e = + 2e_ e, +

Enfd 7 Ed&4 (3.7.13)

_ T
= e et oegey (3.7.4)

Since the first term on the right hand side of equation 3. 7. 14 is En’
the error covariance matrix inherent in the exact solution of the
navigational problem, and the second term on the right is just Ed’

then the total error covariance matrix, Et’ is given by
E, = En + By (3.7.15)

Thus, the total error in the epoch solution of the navigational problem

is the sum of the error inherent in the exact solution plus the error
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introduced by using the epoch as opposed to the conventional or

exact formulation of the navigational problem.

The percentage of error introduced in the solution to the navi-
gational problem by using the epoch state filter rather than the conven-
tional state filter is obtained by comparing the estimated state vectors
for both filters with the rms error in the estimate. For a particular .

solution, the percentage of error is given by the following.

% error = |approximate solution - exact solﬁtion[ (3.7.16)

exact solution

The magnitude of the error between the position vector determined
by the epoch state filter and the position vector determined by the
Apollo navigation filter is given by ‘-f-‘ESF - ECSF"’ A measure

of the error in the position estimate of the exact or conventional
solution to the navigational problem is given by the rms estimated
position error. The percentage of actual error in the position
estimate introduced by using the epoch rather than the conventional

state filter is given by

| CrsF - IrrRUR ” CosF - ITRUR!

% actual error in position estimate = —Z

(rms position error)CSF
(3.7.17)

Similarly, the percentage of error in the velocity estimate of the
epoch state filter as compared with the conventional navigation filter

is determined by
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A V- G mam -V )|
% actual error in velocity estimate = —ESF -TRUE -CSF -TRUE

(rms velocity error )CSF

(3.7.18)
When the percentage errors given by equations 3.7.17 and 3. 7. 18

are small, the ESF may be used in place of the CSF.
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CHAPTER IV

COMPUTER SIMULATION RESULTS

4.1 Simulation Data

The purpose for computer simulating the ESF was to detérmine
the error in this filtering technique as compared with both the true
state and the error in the conventional navigation filter. A circular
earth orbit with a 100 nautical mile altitude and a disturbing accelera-
tion due to the Jy term of the earth's gravitational potential was
chosen for study. As a further demonstration of the characteristics
of this filter, a circular orbit of radius equal to twice the equatorial
radius of the earth was also studied. Finally, the ESF was simulated
for the 100 nautical mile orbit with disturbing acceleration due to

10J, to study the effects of larger disturbing accelerations.

Measurement data was incorporated at intervals of 10 around
the orbit for 80 measurements, thus teéting the filter for 800° or
more than two revolutions.' The measurement vector b was alternately
chosen to be a unit vector in the x, y, and z directions respectively
for sets of three measurements. This was done so as not to bias the
problem in any one direction. The error in the measurement, ¢, was

produced by a random number generator with a variance 0,2 of 106 m2.

—

The initial covariance matrix was chosen to be diagonal with an
rms position error or 8. 84 x 102m and an rms velocity error of 8. 65

m/sec. A diagonal matrix was used so as not to bias the estimation
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problem, although for this simulation the initial covariance matrix is not
critical provided, however, that it is large enough. The covariance matrix
is gradually reduced by measurement incorporation regardless of its

initial quantity.

For both the ESF and the CSF, maximum likelihood filtering
techniques are employed. No approximations are made to extrapolate
the error covariance matrix for the CSF as were made for the ESF so it
might seem that the CSF is more accur_'ate. However the CSF has extra-
polation errors due to the equation E = ®E’ <1>T. Sihce the ESF is an
approximation to the CSF, a comparison of the performance of these

filters was made. The results of this study are given for one Monte Carlo

run rather than the average of many computer runs.

4. 2 Integration Techniques

The integration techniques for both filters were compared on the
IBM 360 model 75 computer. For the integration scheme of the ESF,
epoch state variables are used to integrate the variational equations
whereas for the CSF the current state variables are used. Several
runs of the integration techniques for both filters were made with
various integration step sizes. The results were compared with an
exact solution of the equations of motion. This exact solution was
obtained for a disturbing acceleration of (‘-.u/ZO)(r_-_/rB) so that the
equation of motion reduced to the following two-body equation:

21

'r. + =
- 20

L 0 (4.2

—_ = .2.1
3 0 )

r

Solution to this equation was obtained analytically.
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Both filters were run for various integration step sizes. The
error in significant figures between the states for both integration
schemes and the exact state of the spacecraft was noted after one
revolution for different integration step sizes. Also noted was the
computer run time for both filters. Figure 4.1 illustrates the
time, in seconds, for the computer runs of the integration te_chniquesv
used in both filters with different integration step sizes for one revo-
lution. From this figure it is seen that on the IBM 360 computer
the integration scheme used in the ESF takes longer to run than that
of the CSF for the same step size. However, reference to Figure 4. 2
shows that the integration technique used in the ESF is more accurate
for the same step size than that of the CSF. After one revolution,

a 5 gignificant figufe error in the estimate of the state as compared
with the 12 significant figures of the solution was the accuracy chosen
for the simulation. For this accuracy the er.rors in the Encke integra-
tion scheme did not degrade the solution and rectification was not

required,

An error of 5 significant figures implied a 1° integration step
size for the CSF and a 5° step size for the ESF as seen in Figure 4. 2.
When the step size was eliminated as a parameter from Figures 4.1
and 4. 2 a plot of computer run time verses the error in the integration
technique fof both filters was made (Figure 4. 3). The significance
of this last plot is that when simulated on the IBM 360- 75 computer
the integration techniques of ESF takes longer to run for
the same integration stap size than its counterpart, however,

it is more accurate. It was originally fhought that
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the integration scheme for the ESF would be less accurate and more
time consuming than that of the CSF but this is not the case. In any

event, both integration schemes could be used for either filter.

4.3 Measurement Incorporation for the Simulation

Actual measurement data, 6q, is incorporated by the filter to
improve the estimate of the state. This data consists of the true
measurement value given by bTGETRUE plus an error in the measure-

ment, o, and is given in terms of its constituents as

5a = b' 6x (4.3.1)

TRUE T @

For the CSF, the estimated and true position are determined by Encke's

Method whereE = Ioge + _5 and L TRUE = I'oes + ETRUE' The

position error vector is given by r - LTRUE ©F 6-6 Similarly,

— =TRUE
the true velocity error v - Vrrugw 'S 8iven by v - VTRUE S° that the

state deviation vector for the CSF is determined from

6% = w(dq-b' 6%') (4.3.2)
or
8’ StrUE
6%x=w [ 8g-Db- - (4.3.3)
ra
v YTRUE

For the ESF, the epoch state deviation vector is given by

65



8% = w, (6a-b ~ 6% ) (4.3.4)

- (o]
or
A~z
(] rO
& - ) - “°TRUE
6%, = w,| %a-b, (4.3.5)
v, v, |
- ““TRUE

4.4 Measurement Incorporation for Zero Disturbing Acceleration

In order to demonstrate that the errors in the simulation study
of the ESF are indeed the errors introduced because of measurement
incorporation, the ESF was tested for a 100 nautical mile circular
earth orbit with zero disturbing acceleration. The results of this
simulation are given in Figures 4.4 to 4. 11. For this case, the ESF
and the exact solution to the navigational problem, the CSF, are
essentially the same. The statement @ = 0 between measurements
is not an approximation for the ESF with zero disturbing acceleration

since the motion of the spacecraft in its orbit is two-body.

In Figure 4. 4 the magnitude of the difference between the esti-

mated position of the ESF and the CSF, |¢ is plotted

ESF ~ -I:‘CSF l’
for 80 measurement intervals. This graph shows.that both filters
are close for the case of zero disturbing acceleration except for a
slight random error which grows with time. At the eightieth mea-
surement this error .is only 1. 46 meters. Figure 4.5 illustrates the

magnitude of the difference between the estimated velocity of the

ESF and the CSF, |¥

VESF XCSFI for 80 measurement intervals.
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Figure 4.6 illustrates ‘the fact that for zero disturbing acceleration
both filters are comparable except for a small error. This random
error has a maximum value of 1.44 meters for the case of Figure 4. ‘6
and value of .55 meters after the eightieth measurement. Similarly,
reference to Figure 4.7, a plot of the difference between the actual
velocity error of both the ESF and the CSF ‘2ESF - -TRUE’ -

,i’CSF - XTRUEI for 80 measurement intervals, shows that both filters
are comparable except for a slight random error which is . 00 182
m/sec at maximum. This is also the value of error after the eightieth
measurement. To find the error in the ESF that is in excess of the
error in the CSF at the eightieth measurement, the difference between
the actual position vectors of the ESF and the CSF, .55 meters,

is compared with the expected rms position error of the exact or CSF
solution, 523 meters as seen in Figure 4.8. The percentage of error
in the position estimate using the epoch formulation of the navigational
problem instead of the conventional formulation is approximately

. 11% for the case of zero disturbing acceleration. Likewise, the
error between the actual velocity errors of the ESF and the CSF,
.00182 m/sec, is compared with the expected Velocity error of the
CSF solution, .55 m/sec as seen in Figure 4. 9. The result is that

a . 33% error exists in the velocity estimate of the epoch state filter

in excess of the error in the velocity estimate of the CSF.

In Figures 4. 10 and 4. 11 the expected rms position error and the
rms velocity error at the epoch are given for the case of a 100 nautical
mile circular earth orbit with zero disturbing acceleration. The rms

position error starts out at its initial value, 8.84 x 102 meters, and
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then decreases steadily to a value of 445 meters after 80 measurement
intervals. Similarly, the rms velocity error decreases from its
initial value of 8. 65 m/sec to .52 m sec with measurement incorpora-
tion. Reference to Figures 4. 10 and 4. 11 shows that the rms velocity
error at the epoch decreases faster with measurement incroporation
than the rms position error of the epoch. The fact that these last

two graphs are for the epoch covariance matrix is made clear by
noting that between measurement intervals, the rms position errors
are constant. This is in agreement with the féct that ﬁ:o = () between

measurements.

Between measurements, the errors in the current estimate of
the state of the spacecraft grow with time. These errors are then
reduced with the incorporation of new data as is seen in Figures 4.8
and 4. 9. However, the errors in the estimate of the epoch staté
can only be reduced. They do not grow with time but are constant
within measurement intervals, and the incorporation of new information
acts to only decrease the error in the estimate of the epoch state

(Figures 4.10 and 4.11)

4.5 Disturbing Acceleration Due to Jz Term

The ESF was tested for a 100 nautical mile circular earth orbit
with a disturbing acceleration due to the J2 term. The results of
this test were compared with similar results for the CSF. TFor this
case, the magnitude of the estimated position deviation vector,

[62 |, is given for both filters after 80 measurement intervals in
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Figure 4. 12, Referencé to this figure shows that the magnitude of
the position deviation is approximately the same for the ESF and’

the CSF until the thirty-seventh measurement and after that differs
only slightly. The same is true of the velocity deviation |§v|
(Figure 4.13). The differences exhibited in these figures may be
attributed to the random type of measurement data for the simulation.
When the filter has been operating for a while and reducing the error
in the estimate with measurement incorporation, the estimate of the
state is more accurate. Since the estimate of the state is more
reliable, the required state deviation is leésened. This is seen

in Figurés 4,12 and 4. 13,

As time increases, the difference between the position deviation
vectors for the ESF and the CSF grows (Figure 4. 14) and is due to
the difference between the filter gains. However, this difference is
small,having a maximum value of about. 48 meters and a value of
about 2 meters at the eightieth measurement interval. Similarly,
the difference between the velocity deviation vectors of the ESF and
the CSF (Figure 4. 15) has a maximum value of about .06 m/sec
and a value of about . 003 m/sec after the eightieth measurement

interval.

Figures 4.12 to 4. 15 are plots of the state deviation vector and
illustrafe the effect of each measurement incorporation on the filter.
These figures show what is to be added to the estimate of the state
because of the incorporation of new data. The accumulated effect
of measurement incorporation on the ESF as compared with the

CSF is given in Figures 4. 16 and 4. 17 for the estimated position
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and velocity respectively. Again, the irregularity in these plots

is due to the random type of measurement data. The significance

of Figure 4. 16 is that the estimated position difference between the
ESF and the CSF remains nearly zero for ten measurements and then
grows to about 40 meters after the eightieth measurement. Similarly,
the estimated velocity difference (Figure 4.17) remains nearly zero
for ten measurements and grows to . 065 m/sec after the eigﬁtieth |

measurement.

The errors given in Figures 4. 16 and 4. i7 are for the difference
between the estimates of the ESF and the CSF with no indication of
the true state. At times, the estimate of the state as given by the
epoch formulation of the navigational problem may be more correctly
aligned with the true state than that of the CSF. This is because the
ESF does not have the extrapolation errors of the CSF due to the

equation E = ¢ E, <I>T. Also, the approximation that Eo =& =0

between measurements for the ESF is nearly exact,

A more significant test of the epoch formulation of the navigational
problem is obtained by comparing the actual errors for the ESF and
the CSF. The actual error in the ESF is the difference between the
estimated state for this filter and the true state, |—f—‘ESF - fTRUE' s
and is given in Figure 4. 18. This is easily obtained since for the
simulation the true orbit of the spacecraft is known, The actual
error in the position estimate of the ESF has a maximum value of
about 1800 meters and reduces to 523 meters after eightly measure-
ment incorporations. The same is true for the actual position error

of the CSF, as seen in Figure 4. 19, When the

'ECSF N ETRUEI’
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results of Figure 4.19 aire subtracted from those of Figure 4,18, the
difference between the actual position error of the ESF and the CSF
results (Figure 4.20). This last graph is probably the most signifi-
cant of the simulation. What it implies is that both filters are
comparable., When the actual error difference is positive, the ESF
has more error in the estimate of the position vector and the CSF

is the more correct. Conversely, when the actual error difference

is negative the ESF is more correct. After the eightieth measurement,
the actual error difference has a magnitude of 16 meters. As compared
with the corresponding rms estimated pos i'éion error which has a

value of 523 meters as seen in Figure 4. 21, the percentage of error
introduced by using the epoch formulation of the navigational problem
is approximately 3. 1%. This is the percentage of error due to the

ESF in excess of the error inherent in the conventional solution to

the navigational problem and is small 'fobr all practical purposes.
Figures 4. 22 and 4. 23 are graphs of the actual velocity error for the
ESF and the CSF resgpectively. As seen in these figures the actual
error in the estimation of the velocity has a maximum value of

about 3 m/sec and is reduced to about . 2 m/sec after the eightieth
measurement. More significantly the difference between Figures

4,22 and 4. 23 as given by Figure 4. 24 shows again that both filters

are corﬁparable. The ESF is more accurate than the CSF and vice
versa. Initially, the actual error difference in the velocity estimates
for both filters has a value of zero. After the eightieth measurement
this error increases somewhat randomly to a magnitude of . 048 m/sec.
When this last value is compared with the corresponding rms velocity

error which the percentage of error using the ESF to estimate the
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velocity vector is approximately 8. 7%. Again for all practical purposes
this error is small,
One of the reasons that the ESF is an accurate estimator of the

current state is evidenced by the change in the epoch state from its

true initial value for eighty measurement intervals. In Figure 4. 26

the epoch position change, |30 (t) - io (t,)|, is seen to be 390 meters
at maximum and 170 meters after the eightieth meésurement. The
maximum value, 'ifo (t) - :Yo (to)l , is 2.5 m/sec and the change after
the eightieth measurement is .55 m/sec as s‘een in Figure 4,27,

Both the true epoch position and velocity change are small enough

to insure the accuracy of this formulation of the navigational problem.

To insure that the errors in the simulation were not due to the
integration technique, the osculating orbit was rectified every 180°
for the 100 nautical mile circular earth orbit with a disturbing‘ac-
celeration due to the J2 term. As illustrated in Figures 4. 28 to 4. 31,
rectification produced no observable change in the estimate of the
state since the errors in the integration technique are small enough

so as not to degrade the solution.

Results of another Monte Carlo run for the 100 nautical mile
circular earth orbit with a disturbing acceleration due to the Jg
term are giVen in Figures 4.32 to 4. 47. These graphs especially
Figures 4. 44 and 4. 47 confirm the result of the previous Monte
Carlo run, in particular that the ESF and the CSF are comparable

for this orbit and disturbing acceleration.

The error in the approximation that ® = 0 between measurements

for the ESF decreases with the disturbing acceleration which is a
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function of 1/r4. Because of this, the accuracy of the filter increases
as the spacecraft travels farther into space away from the disturbing‘
influence of the earth. To illustrate this characteristic of the filter,
the ESF was simulated for a circular earth orbit with a radius equal
to twice the equatorial radius of the earth. The results of this

simulation are given in Figures 4. 48 to 4. 53.

As seen in Figure 4. 48, the difference between the position esti-
mates of the ESF and the CSF is considerably less for this orbit
than for the 100 nautical mile orbit, A‘fter' the eighﬁeth measurement,
the position difference for this larger orbit has a value of 11 meters
as compared with 40 meters for the 100 nautical mile orbit. The
differenée between the actual position error of both filters (Figure
4.49) varies randomly having a magnitude of only 4.2 meters after
the eightieth measurement as compared with 16 meters for the 100
nautical mile orbit. The rms position error for the circular orbit
of radius r = 2rE (Figure 4. 50) has a value of 500 meters after the
eightieth measurement. Comparing the difference between the actual
position errors with this value results in a . 84% error. This is the
extra percentage of error introduced by using the ESF to extimate
the state of the spacecraft. A .84% error is a considerable reduction
when compared with the 3. 4% error for the 100 nautical mile orbit.
After the eightieth measurement, the difference between the velocity
estimates of the ESF and CSF (Figure 4.51) has a value of . 0048
m/sec for the orbit of radius r = ZrE as compared with . 048 m/sec
for the 100 nautical mile orbit. The difference between the actual

velocity errors (Figure 4.52) varies randomly having a magnitude of
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. 0048 m/sec for the 100 mile orbit. When the difference between

the actual velocity errors after the eightieth measurement is compared
with the corresponding rms velocity error which is .2 m/sec as seen

in Figure 4. 53, the percentage of error introduced by using the ESF

for the circular earth orbit of radius r = 2rE is 2. 4%. This percentage
of error is considerably less than the 8% error in the velocity estimate
for the 100 nautical mile orbit. These results demonstrate tﬁat the

accuracy of the ESF increases for higher orbits becuase the relative

accuracy of the approximations increase.

4.6 Disturbing Acceleration Due to 10 J2

It would be interesting to apply the ESF to the re-entry navigational
problem. However, for this problem the spacecraft is subject to large
values of disturbing acceleration. To see if the epoch formulation
of the navigation problem works properly for disturbing accelerations
due to terms larger than Jz, the ESF was simulated for a 100 nautical
rni}le circular earth orbit with a disturbing acceleration due to 10 Jq.

Results of this simulation are presented in Figures 4. 54 to 4. 69.

In the first of these graphs, Figure 4. 54, the magnitude of the
position deviation for the ESF and CSF is seen to be the same for
both filters until the eighth measurement. Although the difference
there if only slight, it becomes more pronounced as time goes on
and the error in the approximation for the ESF increases. This same
result is seen for the magnitude of the velocity deviation (Figure
4.55), The difference between the position deviaﬁon for the ESF and

- 61 | has a

CSF is given in Figure 4.56. In this case, LosE!

162 pop
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maximum value of 490 rheters as compared with 48 meters for the
case of a disturbing acceleration due to J2, and a value of 30 meters
after the eightieth measurement as compared with 2 meters for the |
Jo case. The velocity deviation (Figure 4.57) has a maximum value
of .58 m/sec for the 10 Jo case as compared with . 06 m/sec for the
J, case and a value of .50 m/sec after the eightieth measurement

for the 10 Jz case as compared with ., 003 m/sec for the J2 case,.

This considerable difference is due to the error in the simplifications
of the ESF which is large for the case of a greater disturbing ac-
celeration. The difference becomes morerpronounced as time goes

on and the errors of the filter diverge.

Similarly, the difference between the position estimates for
the ESF and the CSF (Figure 4. 58) has a maximum value of 400
meters for the 10 Jz case as compared with 43 meters for the J2
case and a value after the eightieth measurement of 275 meters
for the 10 J2 case as compared with 40 meters for the J2 case,
The difference between the velocity estimates, !{\—’ESF - &CSF’ ,
(Figure 4. 59) has a maximum value of .51 m/sec for the 10 Jq
case as compared with . 065 m/sec for J2 case and a value of . 35
m/sec after the eightieth measurement as compared with . 050 m/sec

for the _J2 case,

The actual error for the ESF with a disturbing acceleration due
to 10 J2 as seen in Figure 4. 60 has a maximum value of about 1770
meters and a value of 470 meters after the eightieth measurement.
The actual error for the CSF (Figure 4. 61) has a maximum value of
about 1770 meters and a value of 650 meters after the eightieth

measurement,
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Again, the difference between the actual errors for both the
ESF and the CSF varies randomly (Figure 4. 62) implying that the
ESF and the CSF are cdmparable. That is, the ESF is more accurate
in estimating the spacecraft's position vector just as often as the CSF.
The difference here is that after the eightieth measurement, the
difference between the actual position errors has a value of about 180
meters. When this is compared with 500 meters for the rms. position
error (Figure 4.63), a 36% error is determined. This is considerably
larger than the 3. 2% error for the case of a disturbing acceleration
due to the simple Jg term. However, not only is the ESF working
for the case of a larger disturbing acceleration but it is comparable

to the CSF in estimating the position of the spacecraft.

The same is true for the percentage of error in the velocity
estimate for the ESF. Although there is a 60% error in the velocity
estimate of the ESF, the ESF and the CSF are comparable as seen

in Figure 4. 686.

Onev of the reasons that the ESF approximately works for the
case of a disturbing acceleration due to 10 J2 is evidenced by refer-
ence to Figures 4,68 and 4. 69. The magnitude of the difference
between the estimated and true epoch position vectors l_%o(t) _ 'Eo(to)!
has a maximum value of 400 meters and a value of 250 meters
after the eightieth measurement. Reference to Figure 4.69 shows
that the magnitude of the difference between the estimated and true
epoch velocity vectors has a maximum value of 2. 5 m/sec and a

value of . 55 m/sec after the eightieth measurement.
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The ESF was simulated for the case of a 100 nautical mile orbit
with a disturbing acceleration due to 100 Spy However, for this case,
the ESF worked properly for a little over a fourth of a revolution.
After that the errors in the approximation that <I> = 0 for the ESF

significantly degraded the solution and the ESF did not work,

Included in this thesis are the computer programs written in the

MAC language for the simulation of the ESF and the CSF.

4.7 Computation Time on AGC

M

The relative execution time for the various operations differs from
computer to computer. The run time solutions given previously
for the integration techniques of both filters on the IBM 360 computer
are not necessarily the same for the Apollo computer. To compare
the computation time for the epoch and the conventional state filters
on a spacecraft computer suéh as the Apoilo Guidance Computer,
(AGC) the explicit computational algorithms for both solutions to the
na\?igational problem are given here. However, only an approximation
to the actual computation time for each of these solutions is deter-
mined according to the total number of various arithmetic and branch-
ing operations. Using the information presented here, a comparison

of both filters for computers other than the AGC may be easily made.

The equations used in the computer subroutines for the ESF and
the CSF were described in previous sections of this thesis. In the
following paragraphs, the sequence of computations for both solutions

of one navigation cycle are given precisely:

77



Input

EPOCH STATE FILTER

measurement vector
measurement data

initial epoch time

initial epoch position

initial epoch velocity

initial true anomaly difference
initial epoch covariance matrix
earth gravitational constant
measurement variance

disturbing acceleration term

Initialization of Loop

SQRT (u)

1
—
pd
—

78



4) 9 = o+ Ap

5 r = r +6r

6) Setd =1

7 Setk=0

v

8) Call DIFEQ to integrate e f with the following iterative loop

o’ —0

8a) Cos 6 = cos (8)

8b) Sin 8 = sin (6)

8c) r_ = ]50[
§d) v, T |_\_ro'|
- 1 )
8e) o, = 7—;30 Yo
VZ
8f) o = 2 __o
ro %
L 2 2
8g) p = 2r0-cyro - 0,
8h) h = Jup
8i) r = R
p ho .
1+ (= -1)cos 8-—2 sin
r
o Hr,
r %
83) U1 = — sin§ - ——= (1 - cos A)
NS
p P
rr,
8k) U, = (1 - cos 9)
p
U
8¢) F = 1-—2-
r
o
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8m) F, = U
t rr 1
o
.1 +
8n) G = --/—,T-(ro U1 o, U2)
U
80) G’rt = 1 ————2—
r

8p) r = Fr‘o+GvO

8q) r = |r|
r
8r) i ==
8s) cos g = _ir'_iz
8t) vy = Ft£o+Gtzo
8u) h = rxy
Ty 2 2 .
8v) ay = -1.5—%— Jo (—=) [ {1- 5(cos ¢) }_L_r_+2cos¢_1_z]
r r

gw)..‘_jﬁ_= %+J_[sin6th+h(1-cose)£]'g.d

dt ré  n2 - -

dr
8x) ——2 = J-Uz[(ro-r)vT+_YrT] ag- Gay

dt j7) - . - -

dVo r T
8y) — = [——(vo—v)] (VO—X) ay*t Fa

dt [T - - -

8z) Setk = k + 1
8Q) If k<4, Go to 8a
9) Set4 = 4+ 1

10) If 4 <3, Go to 8a
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11)
12)

sksk 13)
14)
15)

16)
17)
18)
19)

20)

21)

22)
23)

24)

25)

26)

1/oz=—1—
o

Solve Kepler's equation for x
Uy = (e [x- 1]
JB(t- 1) =r, Uy + 0, Uy + Uy

2
Uy = /e [-3‘2—- - U]

3
_ X
U, = (1/a [— - U]
6
c = —_I/E [3U5 - XU4 - UZJ_U.—(t-'r)]
R(t) = —i— [0y (- x) + eyl v,' - [Uytv- v )le, T} + G
r
V(L) = ;1_3 [, - (CE)XOT] + [_To v-v)lw-v)T+G1
Vi) = _-1-3 [(Uyr) rl o+ (cr )XT] +[-Z o - N -X)T+ FI
ry g

rT-1 = w71
ct)y = rI-1yT
3 r

— sk T
ar o

—0
dv e

- - CcwV (to)T - Ryl
°or,

v )" R(t)

& (t, to) =

C(t) v*(to)T RO v
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217)

28)

29)

30)

31)

32)

33)

34)

35)

36)

Input

lo

b = & b
—0 —
= ! + 2
a5 ~o (E, Bo) @
_ 1 ’
Yo T a3 Eo b
o
E = E'-w b E'
o o %o =0 o

6% = w, 6a
Divide 6}“{0 into 63‘0 and 6_%0 components

ie, 6r0 = Gxo ., O6v_ = 5X3...

6x = @6x
Divide §% into 8% and 6&7 components

Seti=i+1

Go to 1

CURRENT STATE FILTER

measurement vector
measurement data
initial time

initial position
initial velocity

initial covariance matrix
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earth gravitational constant

Q,2 : measurement variance
J2: disturbing acceleration term

Initialization of Loop

s Ir |
v. = |v
o -0
2
_ 2 Vo
(04 - —— B
ry U
1/g = L
o
21
o, = — (& - v.)

Set upper left-hand 3 x 3 corner and lower right-hand 3 x 3 corner

elements of F equal to zero

Seti=1

Iterative Loop:

1) A' Set off diagonal terms of ® equal to zero
2) Set diagonal terms of & equal to one

3 8= b+ox

4y =yt ooy

5) setl =1
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6) Setk = 0

7) Call DIFEQ to integrateé , _;{ with the following iterative loop
7a) Determine x by solving Kepler's equation

7b) U, (x; )= A/a) [ 1 - UO(X; o))

7¢c) r=roU +(;OU1+U2

o
U
) F o= 1-—2
r.
o)
_ 1
7e) G = -/——E(rOU1+oOU2)
= “WH
7f) Ft = U1
rr
o)
U
7g) G, = 1--2
r
7h) r = Fr + Gv
—osc il —0
i) —0SscC = Ft £o+ Gtz
7j), Fose ,-Eoscl
k) r = —r-‘osc+lS
M r o= x|
r
Tm) i =
r
mn) cos g = i, ”
) (6 -2r)- §
7o qg = — — -
r.2
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p)

7q)

Tr)

7s)

7t)
Tu)

7v)

Tw)
7x)
8) |
9)
10)
11)
12)
13)
14)

15)

2

3+ 3Qt g
f(@ = gq
1+(1+01)3/2
r 2
E 2, . .
ay = - 1,5% Jq (_._) [{1-5 (cosg) }_}r+2COS¢_1_z]
r r
G) = K [(3 r)rT— r2 I]
o T

Set lower left-hand 3 x 3 corner elements of F equal to their

respective elements of G(t) i.e. F18 = Go’ F19 = Gr1 -
ds
— R4

dt

dy

dt r

dd
dt

i
e
©

Set k

]
~
+
—

If k<4, Go to 7Ta
Seti4 = o+ 1
If4<11, Go to 7a

E = B’ &L

a = b (E'Db)+a

w=—1-E'b
u = 2
E = E’-g_lgT E’
6% = w6q

Divide § % into 8t and ¥ components i.e.,
6I‘o = 8%, ..., 6V0 = 8%,
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16) Seti=1+1

17) Go to 1

Iterative Solution of Kepler's Equation for x

KE1 Setj=0

— g
KE2  xy = D o0 e v L (302 r(tar)]

° r 2r 6r
0] (o] (0]

[/Et-m]%+ ... ]

2 2.2
X, (Q/Xn)
KE3 U (x;o = [1- + -]
0 n 21 41
2 2.2
X, (a/Xn)
KE4 U, (x ;0o = x [1- + -]

KES Us(x ;) = (1/0’)[Xn' Ul(Xn; )}

KES6 A/ﬁ(tn -T) = r, Ul(xn; o) + O U2v (x5 @)+ Uglx ;o)

n
KET7 r. = T, Uo (xn; o) + oy U1 (Xn; a) + U, (Xn; o)
Jet -yt
KE8 x = x_ - n_ "H
n+1 n

r

n
KE9 Xn = Xn+1

KE10 j = j+ 1
KE11 Ifj<4, Go toKE3

These equations are given in Reference 3
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DIFEQ (Common to both techniques)
Given the differential equation:

dy/dt = f(t, y)

where y is the dependent variable, t is the independent variable and
At is the increment, the value of y att = t + At can be obtained from

the following process:

DQ1 Sety = Yo and t = to (i.e., their initial values)
DQ2 Set At = h

DQ3 Evaluate dy/dt = f(to, yo)

DQRA4 Evaluate k1 = hf(to, yo)

DQ5 Sett = t,+ (h/2) and y = ¥, * (k1/2)

DQ6  Evaluate dy/dt = £(t_ + (b/2), y_ + (k,/2))
DQR7 Evaluate k2 = h.f(to + (h/2), Yo + (k1/2))
DQS Sety =y, + (ky/2)

DRI Evaluate dy/dt = f (xo + (h/2), to + (k2/2))
DQ10 Evaluate kg = hf(t + (h/2), y_  + (k,/2))
DQ11 Sett=to+handy=yo+k3

DQ12 Evaluate dy/dt = f(’co + h, Yo + k3)

DQ13 Ewvaluate k4 = h.f(to + h, Yo + k3)

DQ14 Evaluate k = (k1 +2k2+2k + k4)/6

3

DQ15 Sety = Yo + k
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y at this point contains the desired result
These equations are given in Reference 9,

Since the time consumed for the input and initialization of
the loop is a small parf of the total computation time for both algorithms,
these parts are ignored in the following calculations. Table I contains
a list of some operations common to both filter algorithms and the
number of functions involved in these operations. The number of
various arithmetic and branching operations required by each line
of the iteration loops for the ESF and the CSF algorithms are given
in Tables II and III. The parameter "i'" represents the number of
iterations performed over the whole iteratiye loop. Parameters
"4 and "k'" represent iterations performed over the extrapolation
of the state. The maximum value of "4" is 2 for the ESF and 10 for
the CSF and the maximum "value of "k" is 4 for both filters. 'j"

represents iterations performed over the solution to Kepler's

equation and has a maximum value of 4 for both filters,

It is pointed out that in formulating the algorithms, little
attempt has been made to organize the computation so as to minimize
the overall execution time on the AGC, Tables II and III and sub-
sequent tables derived from these, represent a reasonable count of
the number of various operations required to execute the algorithms
for both filters. In Tables II and IIl computation has been divided
into three sections: (A) extrapolation of the state, (B) extrapolation
of the covariance matrix, and (C) update of the estimates. The

computation time for the first and third of these sections should be
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approximately the same for both filters. However, if the method of
extrapolating the state for the ESF is tqo time consuming, then

this method can be replaced by that used in the CSF with a slight
modification. The big savings for the ESF comes in the extrapolation
of the covariance matrix. Isolation of the computation time for this

section emphasizes this savings.

The total number of various arithmetic and branching operations
required for each of the algorithmic divisions described previously
i.e., (A) extrapolation of the state, (B) extrapolation of the covariance
matrix, and (C) update of the estimate, are presented in Tables IV
and V for the ESF and the CSF respectively, after one complete

execution,

The relative time required for a single execution of each of
these operations on the AGC execution of each of these operations on
the AGC is summarixed in Table VI. The information is adopted
from the Users Guide to the Block II AGC/LGC Interpreter,

Reference 11.

The total number of "add times' required by one complete
execution of the ESF and CSF algorithms is given in Table VII in
"{" iterations. Finally a rough estimate of the overall computation
time for the AGC required by the ESF and CSF algorithms is given
in Table VIII for the algorithmic divisions previously described
and their total. These tables give the results of converting the infor-

mation for '""our case'' in Tables IV and V into actual computation

time in seconds. The results given in Table VIII were expected,
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and in particular those of Section B. Even if the integration scheme
for the ESF, Section A, were more time consuming than that of the
CSF, the latter method could be substituted in its place. However,
there is a considerable savings in the execution time for the ESF
because of the assumption that q> = 0 between measurements, This
savings is evidenced by Section B of Table VIII. The assumption
allows for & to be calculated analytically rather than by integr‘ating

a differential equation. When & is calculated by integrating a differen-
tial equation using the MAC subroutine DIFEQQ, the integration is
carried out in four steps to yield & for 1° increments. All of the
equations used in determining the differential equation for & are
sequenced on four times to determine & for the 1° increment. To
calculate ¢ at 10° measurement intervals, the equations for & are
cycled forty times. Using the assumption E = 0 between measurements
for the ESF, & is calculated only once for the 10° measurement

intervals and need not be computed along the path.
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Operation : Add Multiply Divide SQRT Initialize

16

(3x3) Matrix Transpose* 6
(3x3) Matrix Inverse | 14 27 9 6
(3x3) (3x3) Matrix ‘Matrix Multiplication 18 217

(3x3) (3x1) Matrix Vector Multiplication 6 9

(3x1) (1x3) Vector Vector Multiplication 9

(6x6) (6x6) Matrix Matrix Multiplication 180 216

(6x6) (6x1) Matrix Vector Multiplication 30 36

(8x1) (1x6) Vector Matrix Multiplication 36

(3x1) Vector Cross Product 3 6

(3x1) Vector Dot Product 2 3

(6x1) Vector Dot Product - 6

Magnitude (3x3) Vector 2 3 1

*The transpose of a (3x3) matrix is considered as 6 initializations since only the off-diagonal

elements change locations
TABLE I

Functions Used in Some Operations Common to Both Filter Algorithms




26

TABLE II (ESF)

Add » Trans. If
Line Section Subtract Multiply Divide SQRT Function (Branch) Initialize
1 C 3i 6i
2 C 3i 6i
3 C 5i 6i 2i
4 C 1i
5 C 3i
6 A 1i
7 A 1i
8 A 7181 1248i 2201 401 161 8i 181
9 A 14i
10 A 14i
11 B 1i
12 B 2i 31 1i |
13 B 33i 30i 5i oi ai . 5
14 B | 1i 1i




€6

TABLE II (Contd. )

Add Trans. If

Line Section Subtract Multiply Divide SQRT Function (Branch) Initialize
15 B 2i 2i
16 B 1i 2i 1i
17 B 1i 3i 1i
18 B 2i 4i
19 B 271 451
20 B 331 561 2i
21 B 33i 561 éi
22 B 14i 271 9i 12i
23 B 18i 271 6i
24 B 6i
25 B 27i 271
26 B ‘ 361
27 B 30i 361 T 30i
28 B 361 42i §
29 B 301 36i 6i |




6

TABLE II (Contd.)

Add Trans. If
Line Section Subtract Multiply Divide SQRT Function (Branch) Initialize
30 ‘B 661 721
31 C 6i
32 C 6i
33 C 301 36i
34 C 61
35 C 1i
36 C 1i
q‘DIFEQ for _f‘o, -‘-}o and 6
DQ1 A 8Li
DQ2 A 141
DQ3 A 7741 14941 2241 541 241 141
DQ4 A 711
DQR5 A 841 84t
DQS6 A 7741 1494i 2241 54l 241 14i




g6

TABLE II (Contd,)

Add Trans, If i
Line Section Subtract Multiply Divide SQRT Function (Branch) Initialize '
DQT A (£A :
DQS A 74 740 |
DQY A (NEA 1494i 2241 541 241 | 141
DQ10 A 71 E
DR11 A 84i J!
DQ12 A A 14941 2241 541 241 i 141
DQ13 | A (FA J
DQ14 A 214 [£A!
DQ15 A 721
DIFEQ loop used to evaluate DQ3, DQ6, DQY9, and DQ12
8a A 1k4i
b A 1k4i
c A 2k4i ki 1k4i i
d A 2ki 3kii 1kii 1
e A 2k4i 3kii 1k4i
f A 1kei 1k4i 2kdi

»
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TABLE II (contd, )

_ Add Trans If
Line '| Section Subtract Multiply Divide SQRT Function (Branch) Initialize

g A 2k4i 4kii

h A | 1kti 1kai

i A 3kii 4k4i 3kLi

j A 2k4i 3kti 2kLi 1k4i

k A 1k4i 2kei 1kei

1 A 1k 1kti
m A 3kii 1kei

n A 1kl 2k4i 1k4i

o A 1kei | 1k4i

p A ki 6kii

q A 2k4i 3k4i 1k4i

r A 3kii

s A 2kLi 3kei

t A 3ki 6kii

u A 3kii 6kei

\% A dk4i 18k4i 2k4i




L6

TABLE 1II completed

Add - Trans. If

Line Section Subtract Multiply Divide SQRT Function (Branch) Initialize

w A 10k4i 18k4ii 2k4i

X A 16kei 36kei 1k4i

y A 15k4i 24k1Li 1k4i

z A 1kei

Q A 1k4i

**Solution to Kepler's equation used to determine 13

KE1 B 1i
KE2 B 1i 2i 1i 1i
KE3 B 1ji
KE4 B 1ji
KEb5 B 1ji 1ji
KEb6 B 2ji 2ji
KE7 B 2ji 2ji
KE8 B 2ji 2ji 1ji
KE9 B 1ji
KE10 B 1ji
KE11 B 1ji
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TABLE III (CSF)

Add Trans. If
Line Section Subtract Multiply Divide SQRT Function (Branch) Initialize

1 C | 30i
2 C 6i
3 C 3i
4 C 3i
5 A 141
6 A 141

*q A 3, 400i 4, 160i 8601 120i 200i 400i
T B 10,0801 11,4801 1120i 720i
8 B 14i
9 B 141

10 B 3601 432i 36i

11 B 361 42i

12 B 30i 361 6i

13 B 66i 721

14 C 6i

15 C i
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TABLE III (CSF) (Contd.)

Add Trans. If
Line Section Subtract Multiply Divide SQRT Function (Branch) Initialize
16 C 1i
17 1i
*DIFEQ for §, y and &
DQ1 A (LA
B 3641
DQ2 A 121
DQ3 A 7441 984i 1741 32i 541 821
B 18941 25141 141 94i
DQ4 A 6421
B 364i
DQ5 A (EA! 64l
B 3641 3641
DQ6 A 7444 9841 1741 32i 541 84
B 1894 25141 121 941




001

TABLE III (Contd. )

Add Trans. If
Line Section Subtract Multiply Divide SQRT Function (Branch) Initialize
DQ7 A (A
B 3641
DQS8 A 641 64i
B 3641 3641
DRI A 7441 981i 1721 3Li 54i 841
B 18941 25141 141 94i
DQ10 A 641
B 3641
DQ11 A 71
B 364i
DQ12 A 7441 9841 1741 311 541 84i
B 18941 25141 141 941
DQR13 A 641
B 3641
DQ14 A 1841 64i
B 10841 3641
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TABLE III (Contd. )

Add : Trans. If
Line Section Subtract Multiply Divide SQRT Function (Branch) Initialize
DQ15 A 641
B 364
DIFEQ loop used to evaluate DQ3, DQ6, DQ9, DQ12
kg A 33k4i 30kei 5kLi g9kai 4k 5kii
b A 1k4i 1k4i
c A 2kLi 2k
d A 1k2i 1ki
e A 1k2i 2k4i 1k4i
f A ki 1kei
A 1k2i 1kti
h A ki 6kLi
i A 3kii 6kLi
j A 2kLi 3kti 1k2i
k A 3k4i
1 A 2k4i 3kii 1k{




(A1)

TABLE III (Contd, )

Add ' Trans. If
Line Section Subtract Multiply Divide SQRT Function (Branch) Initialize
m A 3kpi
n A 2kdi 3k4i
o A S5kai Tkei 1k4i
p A 4kLi S5kai 1k4i 1k4i
q A 4kei - 18k4i 2k4i
r B 9k4ii 35k4Li 1kdi
S B 9k1Li
t A 3kii
u A 6k1Li 9k4Li 1k4i
\4 B 180k4i 216kLi |
w A 1k4i
X A i 1kLi
>|<*Solu’cion to Kepler's equation used to determine 7a
KE1 1k4i
KE2 1kAi 2k4i 1kdi 1k4i




€01

TABLE ITI(Contd, )

Add ' Trans. If
Line Section Subtract Multiply Divide SQRT Function (Branch) Initialize
KE3 A 1jk4i
KE4 A 1jk2i
KES A 1jkti 1jkdi
KE6 A 2jk4i 2jk4i
KE7 A 2jkdi 2jkLi
KES A 2jki 2jkai 1jkLi
KE9 A 1jkei
KE10 A 1jkii
KE11 A 1jk4i




o1

Section Add Trans. If

of ESF Subtract Multiply Divide SQRT Function (Branch) Initialize
A 7201 1248i 220i 40i 161 10i 20i
B 3561 4691 271 1i 9i 4i 951
C 46i 60i 2i 1i 12i

TABLE IV

Execution of the ESF Algorithm in "'i" Iterations

Total Number of Operations Required by One Complete




S0T

Section Add Trans. If
of CSF Subtract Multiply Divide SQRT Function (Branch) Initialize
A 3400i 41601 8601 120i 200i 420i
B 10, 582i 12, 062i 1, 1261 10i 7561
C 7i 6i 1i 42i
TABLE V

Total Number of Operations Required by One Complete

Execution of the CSF Algorithm in "i" Iterations




Operation : Relative Execution Time

Addition : 1
Subtraction 1
Multiplication | 2
Division 4
Square Root ‘ 3
Transcendental Function 9
If (Branch) 1
Initialize | 2
*Approximate "add - fimes" where one add-time = .66 milliseconds
TABLE VI

Relative Execution Time of Operations on the AGC
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A B C Total

ESF 4,4101 1, 680i 199i _ 6, 289i
CSF 19, 800i 40,812i 113i 60, 7251
TABLE VII

Total Number of "Add Times'' Required by One Complete

”i”

Execution of the ESF and CSF Algorithms in "i" Iterations

107




A(sec) B(sec) C(sec) Total

ESF 2.91i 1.11i . 131 4,15i

CSF 13.1i 26, 9i 1 40. 1i
TABLE VIII

Estimate of Total Computation Time for the AGC Required by One

Complete Execution of the ESF and CSF Algorithms in i

108
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CHAPTER V

CONCLUSIONS

From the computer simulation results of Chapter IV it is seen
that the epoch state filter produces the estimated state of the space-
craft with nearly the same accuracy as the current state filter, but
with a considerable savings in computational timé. The inaccuracy
in the ESF, incurred because of the assumption that allows for the
analytical calculation of the state transition matrix, is small for a
100 nautical mile circular earth orbit with a disturbing acceleration
due to as much as 10 Jz. At times in the orbit, the ESF is even

shown to be more accurate than the CSF.

Computer simulation results were for low earth orbits. where
the effect of the disturbing acceleration due to the J2 term is greatest,
thus contributing to the largest possible inaccuracy for the ESF. This
inaccuracy decreases as the spacecraft's altitude increases away
from the influence of disturbing bodies. It was further demonstrated
that disturbing accelerations due to as much as 10 J2 were tolerable,
The fact that for a larger circular earth orbit with radius twice the
equatorial radius of the earth, the errors in the estimate of the
state of tﬁe spacecraft are decreased considerably is consistent

with this trend.

The savings in computation time for the ESF on the AGC is a

~ -substantial improvement over the conventional solution to the
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navigational problem. This savings is due largely to the analytical
extrapolation of the state transition matrix as oﬁposed to the numerical
integration of a matrix differential equation. Also, the integration
technique for the ESF, which was thought to be more time consuming
than that of the CSF, proved to be comparable on an IBM 360 Model

75 computer and faster on the AGC,

The results of the study indicate that the epoch state filter is
an economical filter which may be used to estimate the same quantities

as the Apollo navigation filter.
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APPENDIX A

DIFFERENTIAL EQUATION FOR THE

EXTRAPOLATED COVARIANCE MATRIX

- T
E'(t) = @, b, ) Et, )& (. t ) (A.1)
e(t, t,_ ) = Fl) e, t ) (A.2)

5 T . 5T T
. ) = BTt t ) F () (A.3)

Differentiating A. 1 with respect to time yields

% 7 - 2 T )
E'(t) = @(t, t,_) Bl )@ (t, t ) (A.4)

+T
+ <I>(tk, tk—l) E(tk_ 1) ¢ (tk, tk—l)
Substituting Equations A.2 and A.3 in A. 4
iy L , T
E'(t,) = Ft) [, t, ) Et,_ )& (t, t_ )] (A.5)
T T
+ @, t,_ ) Bt ) @7, tk-l)] F(t,)
Noticing that the terms in brackets are E’(t,) Equation A.5 reduces to
: T
’ - ’ ’
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APPENDIX B

VARIATIONS OF THE

EPOCH FORMULATION

Rather than using @ as the independent variable and solving the

following differential equation

dé

__.=_l-_l_+
dt r2

1

hZ[Sin 6hxr+h(1-cos@r]-a, (B.1)

The generalized anomoly, %, may be used instead. The differential

equation to be integrated is then

U, (x5 @)
dx = @ + 3 * v . ad (B'z)
dt r 7 -

where U3(x; o) is the transcendental function

n{1l ozx2 : (c:zxz)2
Un(x; @) = X (——- + - ) (B. 3)
n! (n+2)! (n+4)!

and ¢ is obtained from the following equation

9 2

v
roop

(o4 = - (B- 4)
as given in References 1 and 2. Integrating Equation B. 2 for x eliminates

the need to solve Kepler's equation. This is also the case when § is

used as the independent variable since Kepler's equation can be solved
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for either x or 8. The U functions used in solving Kepler's equation
can be expressed in terms of either x or @, i.e., U = U(x; o) or
U = U(B; «). Still another variational parameter which may be used

is the variable epoch time, to’ and the equation to be integrated is

—-—°=—}-(0v+U r)'ad (B. 5)
dt - - =
7
where c is defined by
Jue = 3Ug-xU,- Uy /B (t-t) (B. 8)

where U,, U4, and U5 are transendental functions of order 2, 4, and 5
respectively and t is the current time. Use of the differential equation

for to necessitates solving Kepler's equation
Npt-t)=r U xe)to Uylx o)+ Ug (x; @) (B. 1)
for x. In Eqilation B. 17, 0, is given by

1
O ~ —7_‘:30 _Yo (B. 8)
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APPENDIX C

DERIVATION OF THE VARIATIONAL

EQUATIONS FOR -G, —Ft, AND F

The equation for - G in terms of the U functions is given as

6. -Lu+ %y, (C. 1)

Differentiating this equation according to the formal rules of differen-

tiation given in Section 3. 4 results in

dU dU
_dG=_r‘ l+1 doU+U 2 (C.2)

dt JE dt J;Tdtzﬁdt

where the variational equations for the tra'nscendenfal functions are

given by
dU '
1. UO<____dE+_1_ U3__G‘°’)—_1—U1 U, -2 (C. 3)
dt : dt 2 dt 2 dt
dU \
2.y (S Ly, dey.Lly2de (C. 4)
dt dt 2 dt 2 dt
and that of d by
29.[. = -.._2_ v ad (C.5)
¢ - 2
7]
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Substituting Equations C. 3 to C. 5 into Equation C. 2 and collecting

terms yields

r ’ -
_dG | -_9_(_‘1‘.§+1U3 do )]___1. (rU, - ¢ U,)]
dt Jpoodt 2 dt r,
-__U_z_.l/_a-,d[_r_ Ul-__(l_ U2]A+._]‘_£-EdU2 (C.6)
K NE VE p

The first term in brackets is F and the second bracketed term is G.

Making these substitutions in Equation C. 6 results in the following

variational equation for -G

U
g6, T2, g To (dE, 1y deyp.l ..,
dt TR JB Cdt 2 dt p- -
(C.17)
Similarly, differentiating the equation for Ft where
U
- Ft = ﬁ .___._1 (C.8)
r r
o
yields
] _
) Ft _ ﬁ dU1 ) «/F - dro (C 9)
2 71 ’
dt rr dt rr dt
o )
_ ' dU1 d
Upon substituting Equation C. 3 for and C.5 for =% and
dt dt
dr, d 1 da \ _ 1 d d
=-o (L ly ey L)y, ey 20 (a0
3 2 °' "24¢ 1 gt

dt °©Mdt 2 dt

184



where

- Loroa (C.11)
dt  JE~ T~
Into Equation C. 9, the resulting equation is
dF U.U
DB [0, (8 Ly ) Iy
dt rr_ dt 2 dt u
U
_ B Ul[ <__§.+._._U3 d“)+_.__2 (r+r )v-a
rr 2 dt 2 dt n - T
o)
} _1_,: _d] (C.12)
f .
Collecting terms and simplifying Equation C, 12 produces
dF '
- t=ﬁ<d5+_lu3 )l:—l—(I‘U"‘oU)]
dt r 2 tdt 2 dt
U, U U, U, U.,U
+121_Y,§d_ 12212,§d_12 1X§d+
rr_ /B r JE rr JE
v ?
+ r-a (C. 13)
2 —d
rr

The second and fourth terms on the right-hand side of Equation C. 13
cancel and the term in brackets is G

Making these changes and col-
lecting related terms results in
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dF — U U
-t (v ) e L (- Eyagryoay
dt r 2 ‘dt 2 dt JET rg” T4 T -
UlA/'u‘ ,
-V ad+ r-ad> (C. 14)
v-a .

where v * aid has been added to and subtracted from the second term
in parantheses. Collecting terms within the second set of parentheses
results in - v - ay + (- th a,+Fv: f‘d) which is equal to (_Y-o - '_\_7)3 .

Thus, the variational equation for --Ft is

dF

bt _§+__U de Vg - (v -v)- a.F

- v, -v)- a C.15)
TR K 3dt> t™ 5 Yo aft )

Finally, the equation for F is
F = 1- <=2 (C.16)

Differentiating this equation as was done previously for -G and Ft

yields
dU U dr
dF _ _ 1 2, 22 o (C.17)
dt r dt r dt
o} o
dU2 dro do dg
Substituting for s , , and —— with equations C. 4, C. 10,
_ dt dt dt dt

C.5, and C. 11 respectively results in
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U
dF 1 (de 1 do - 2
= — Uy, — r U, +¢g. U - v: a
2
U,2 U U,U, r- a '
+ zgv 3d+ 2 v ag- 122_ —d (C. 18)
Br, Br, Ts A

Cancelling the second and fourth terms on the right-hand side of
Equation C. 18, replacing the term in brackets by ./§ G, and collect-

ing related terms yields

dF . . 1 (dE, 1y da) mg. rUp (UVE
. N S 3T \ - =
dt r, dt 2 dt ur, r,r
U
-.—;——z-gd tv.-ag-veay (C.19)
(o]

where_Y ) has been added to and subtracted from the term in the
second set of parentheses. But this term is just — (v, - v)ayso
0 - /=

that the variational equation for F is.

IF B (L, 1y da)gil oy aF

dt  r2%dt 2 ° gt p —° — —d
- X v -v).a,F (C. 20)
g ° - —d )
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E - - - - .
M NXOF = W ( NO ~ ROLDVTN
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M "DROE = NXNE
N . . 0 o0
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S 1 1
M DROE = DXNE
S . ? 2
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M 16 . IF 0> 2., 0 =0

Mo START- AT RFGIN



CONVENTIONAL STATE FILTER

M INDEX T 4y 2
M DIMENsrnm(F.ﬁxs).(R;6x3),(w.6),(F,6x6).(ID.bXé).(PHI,6X6).
W7 (NOWRO) 4 {DXFeb) 4y { DVTN,6)
M REGIN DO TO 2 FOR T = 0(1)79

M 2 DO = RNDMN(1000) " \-:j\
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M . 3 £ = 70100

S 1

M PO TO 4 FOR T = 21(7)35
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S M : _PDOSC = 2 PI_SORT(RR "/ MU)
M ’ DT = PDOSC / 360
M VC = SORT( M) / RR )
M Tl = 0
M J =0
E -
M ' IZ = (0, 0, 1)
E ' ' - B
Mo NU = (0, 0Oy 0)
E ' - -
M . DELTA = NU
E ' - -
M : NDELAD = NU
E - -
M NUAD = N
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E ) . -— .
M ) v = (09 VO 0)
E -— .
M DRE = (0. 05 0)
E - -
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M DO TO '8 FOR T = 1(1)80
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M DO TO 11 FOR Z = 0(7)35
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M ; DOTO Y6 FOR 1L = 1(1)10
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S ' 25 4
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E - - -
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E . - -

M ) IRT = NITL RT )

F N -
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E - - - 2
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E - . -

M - DOELTA/DT = Nil

F - 3 - - -

M DNU/ZDT = ¢ =M} / RR ) { FO R + DELTA ) + aD

E - -

M DDELAN/DT = NIIAD

E : - : 3 C - - -
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E ’ e ’ ) 3% E
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k - - - . - 58
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E - :
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F ' - - -
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E — -
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START AT REGTM



